SOURCES CONTRIBUTING TO TROPOSPHERIC OZONE PRODUCTION OVER SOUTHERN AFRICA AND THE ADJACENT INDIAN OCEAN ISLANDS

Jean Pierre M. Mulumba

Phd Student First year UKZN 2014

<u>Outline</u>

1. Background

- Key research question
- 2. Tropospheric ozone sources categories;
 - Stratospheric Tropospheric Exchange (STE);
 - Biomass burning emissions (BB);
 - Anthropogenic emission (AE)s;
 - Biogenic emissions(BE);
 - Lightning emissions (LE);
 - Sinks and ozone budget
- 3. Effects of TO sources on climate
- 4. Summary
- 5. References

Background

Why studying tropospheric ozone over SAAIOI?

- Secondary pollutant and greenhouse gas;
- O_3 poorly documented over the region;
- Elevated concentrations observed since the last 2 decades of the 20th century over SAAICI;
- Negative impacts on humans and the environment;
- SAAIC vulnerable to climate change;
- Studies useful to understand trends, validate previous ground based and remote sensing data and predict the future due to climate change.

Tropospheric ozone sources categories

- Stratospheric Tropospheric Exchange (O₃ intrusion)
- Photochemical formation (oxidation of precursors and sunlight)

Sources: http://faculty.washington.edu/jaegle/558/ozone_NOx.pdf

Source: http://www.fz-juelich.de/icgi/mozaic/background

Stratospheric Tropospheric Exchange (STE)

Sources: Holton et al. (1995).

Biomass Burning emissions (BB);

- Main traditional energy source
- Secular cultural practice for agriculture and pastoral activities
- A response to socio-economic pressures of the ever increasing population in developing world particularly in African continent

- A significant source of radiative species (aerosols, CO_2 , nitrogen oxides (NOx = NO + NO₂), (CO)
- Africa = leading source of air pollution from biomass burning (Hao and Liu,1994)

- Average of 30 to 50% of the total amount of vegetation burned globally each year in Africa; an estimated 1.3x10⁶ tons of dry biomass burned per year (Delmas *et al.* 1991);
- Satellites and ground based measurements show ozone enhancement over SAAIOI region (Seiler and Cruzen, 1980; Cruzen and Andrea, 1990) during burning season;
- International research bodies STARE, TRACE-A and SAFARI 2000, SHADOZ, MOZAIC...etc, confirm BB role on photochemical formation of ozone;
- Contradiction with the above findings led to the use of threedimensional (3-D) atmospheric chemistry and transport models (CTMs);

- Photochemical O₃ formation from BB may be less important than indicated (Lelieveld and Dentener, 2000; Marufu *et al.* 2000; Moxim and Levy, 2000);
- BB contribution to ozone formation is smaller when compared to the effects from lightning and transport in the troposphere (Ziemke *et al.* 2009);
- No research on the spatial and temporal distribution of BB to comprehend its contribution to TO₃ over SAAIOI (Wai *et al.* 2013).
- Analyse of remote sensing and ground based measurements (1994-2005) to comprehend BB trends and contribution to TO_{3} .

Anthropogenic emissions

• Human activities (energy-use in industry, transportation, mining, construction, and in the household (Aghedo *et al.* 2007

(CC) Tom Bougher (Flickr) An anthropogenic (man-made) industrial point source of air pollution emissions

Southern Hemisphere emissions contribute to 10 to 20% of the total column ozone (TCO)

- Southern African region, the fastest growing region with regard to human population and urbanisation,
- Anthropogenic emissions set to increase as the needs of energy for households, transportation and industrialisation (UNEP 1999)
- Most countries in southern Africa lack or have inadequate air quality standards (UNEP 1999) to control anthropogenic emissions from mobile and stationary sources;
- Much of tropospheric ozone observed at Irene is due to urban and industrial pollution from Gauteng (11 large coal power plants with 34 GW generating capacity (Diab *et al*.2004)).

BIOGENIC EMISSIONS

- Emissions from biological metabolic processes on land and in the Oceans (USEPA, 2005). VOCs, NO₂, CO, CH₄;
- Significantly contribute to atmospheric chemistry both at a global and regional scale (Otter and Scholes, 2005);
- Isoprene is the most dominant biogenic species (Guenther *et al.* 2006);
- Tropical and subtropical savannahs key source regions of global soil biogenic $NO_{x,}$ due to high T° and their wide geographic coverage;
- Future changes in environmental conditions may increase biogenic emission rates significantly (Pyle *et al.* 2007).

Lightning

- Sources of NO_x in the middle to upper troposphere (Pickering *et al.* 1998; Otto *et al.* 2010);
- Not well understood; radiative forcing for tropospheric ozone formation as a greenhouse gas is still uncertain (Yuan *et al.* 2012).

- Long lifetime of NOx in the upper troposphere especially in the tropics could be the cause of dominant features in tropical tropospheric ozone distributions
- Aerosols concentration and mesoscale convective systems play a considerable role on the formation of tropospheric ozone

Sinks contributing to the tropospheric ozone budget

Ozone production and destruction in the atmosphere Sources: Royal Society 2008.

Photolysis

- $O_3 + h\nu (\lambda < 320 \text{ nm}) \rightarrow O_2 + (O^*)$ (O*) + H₂O \rightarrow OH + OH
- HO2/OH catalyzed destruction
- **Surface deposition (dry and wet)**

Effects of sources contributing to ozone formation on climate

0

Summary

- STE, BB, BE, AE, LE are the main contributing source of tropospheric ozone in the SAAIOI;
- Natural sources depend on meteorological factors;
- Impact on human health and natural environment;
- SAAIOC is vulnerable to climate change;
- Investigation on the trend and distribution and variability of the source and meteorological factors need to be investigated;
- Legislation needed to mitigate future impacts of ozone on humans and general environment.

